Under consideration for publication in J. Functional Programming 1

The view from the left

Conor McBride and James McKinna

Department of Computer Science
University of Durham
c.t.mcbride@durham.ac.uk
j.-h.mckinna@durham.ac.uk

Abstract

Interactive, refinement-style proof construction in type theory has several things to offer
the programmer seeking to exploit languages with dependent types.

Firstly, as is by now quite well-known, definition by pattern matching becomes a more
discriminating tool for problem-solving, since it refines the explanation of types as well as
values. This corresponds to the instantiation of propositions in proof by induction.

Secondly, Gentzen’s sequent calculus draws attention to the réle played by cut formulze.
Subsidiary case analyses on the results of intermediate computations, which commonly
take place on the right-hand side of definitions by pattern matching, should rather be
explained by ‘left rules’. This subsumes the trivial case of Boolean guards in simply-typed
languages.

Thirdly, pattern matching decompositions have a well-defined interface given by a de-
pendent type. These are user-definable, and generalize Wadler’s notion of ‘view’ (Wadler,
1987). The programmer wishing to introduce a new view of a datatype, and exploit it
directly in pattern matching, may do so via a standard idiom: writing a program.

This paper introduces enough syntax and semantics to account for this high-level style
of programming in dependent type theory. It culminates in the development of a type-
checker for the simply-typed lambda calculus, which furnishes a view of raw terms as
either being well-typed, or containing an error. The implementation of this view is a proof
that typechecking is decidable.

1 Introduction

Contemporary proof development systems based on intensional type theory (with
a consequent notion of explicit proof object on the one hand, and computation as
a primitive notion in the theory on the other) have a highly evolved account of
goal-directed problem-solving, based on the “problems-as types” principle.

Programming is a particular kind of problem-solving, and consequently we might
expect to gain insight from such proof systems into the programming process, es-
pecially in the presence of languages with dependent types. Natural deduction pre-
sentations of programming, with the accompanying slogans “propositions-as-types”
and “proofs-as-programs” are, of course, by now very familiar. Our motivation



2 Conor McBride and James McKinna

comes from more recent work (Pym, 1990; Herbelin, 1995; Dyckhoff & Pinto, 1998)
exploring refinements of Gentzen’s sequent calculus (Gentzen, 1935). Our interest
lies in the light this sheds upon the interactive process of proof/program construc-
tion. In particular, we focus on the following features:

o left rules, which give rise to the left-hand sides of pattern matches;

o cut formule, which capture the types of intermediate computations;

o right rules, which more-or-less directly capture the right-hand sides of pattern
matching equations, where these are in constructor form.

We intend this paper, among other things, to help push towards an appropriate
syntax for programs presented in this style.

Such an analysis is also familiar territory to readers of Wadler’s work in the early
1990°s (Wadler, 1994). All of these studies, however, have largely focused on the
functional fragment. Inductively-defined datatypes have received rather less atten-
tion, not least because induction interferes with cut-elimination—precisely Gentzen’s
motivation for introducing sequent calculus in the first place.

This paper develops an analysis of interactive program development based on these
ideas from sequent calculus. We wish to identify the following new insights:

e the application of a cut rule is not restricted to the right-hand side of a match;
analysing cut-formulae on the left offers considerable notational convenience,
even when programming with simple types;

e the introduction of type dependency makes pattern matching a far more pow-
erful notion than its explanation via a term language of case-expressions; we
explore the consequences of this in detail below;

e one of these consequences is that control structures based on combining con-
tinuations can be reified as data—this gives us ‘views for free!’;

e by focusing on interactive development, we expose the possibility of a more
flexible approach to programming.

The key feature of pattern matching in simply typed languages is that the struc-
ture of an arbitrary vaelue in a datatype is explained. This explanation provides a
canonical control structure for the programmer, analysed by Augusstson and oth-
ers in terms of decision trees, which marries a switch on the outermost constructor
symbol with the exposure of subexpressions (Augustsson, 1985).

In dependently typed languages, especially those used for inductive theorem prov-
ing, pattern matching arises from the application of an elimination rule (induction
principle). The key feature of induction is that the result type is instantiated, and
hence further explained, by the patterns.

This has several consequences for the programmer exploiting dependent types.
Firstly, we can, and should, extend the syntax and semantics of pattern match-
ing to go beyond traditional presentations involving case. In particular, one should



The view from the left 3

identify, and record explicitly (in the decision tree), the elimination rule giving rise
to the patterns. This gives us one kind of node, which we dub ‘by-nodes’, in our
decision trees, and correspond directly to application of left rules.

Secondly, that we can, and should, reanalyse expressions on the right-hand side of
pattern matches. A common idiom is to consider subsidiary case analyses on the
outcome of some subcomputation, whose type, from a logical point of view, is a
cut formula. In the trivial case of a Boolean case split, this idiom is made concrete
by the use of guards. The introduction of languages with type dependency, how-
ever, considerably strengthens the utility of subsidiary case analyses on such cut
formulae/subcomputations, since they can change the types of further subcomputa-
tions. This gives a new kind of node in the decision tree, which we dub ‘with-nodes’,
and corresponds to the use of cut. But now there is a twist in the tail: we analyse
cuts in such a way as to permit further pattern matching; namely that cut formulae
are analysed on the left, not on the right as in current practice.

Finally, the statement of an induction principle for a datatype corresponds to iden-
tifying an allowable set of patterns with which to match on values of the type; that
is to say, it furnishes a view in Wadler’s sense (Wadler, 1987). Now, certain views,
corresponding to the simple matches on constructors, or the standard structural
induction principle for the datatype (Burstall, 1969; Nordstrém et al., 1990), are
always available for free. But the programmer may also define new views, provided
only that the corresponding induction principle be admissible.

There is a standard method for achieving this: by writing a program. To be able
to do so, however, demands an expressive enough type system, in which types
can explicitly describe patterns. Given such a type structure, one may then go
even further. The programmer may introduce a new datatype, whose ‘view for
free’ is precisely the sought-after view. To establish this view for the old datatype,
one constructs an isomorphism or, more generally, simply a surjection from the
old datatype. Such surjections embrace Coquand’s notion of ‘covering’ (Coquand,
1992), and are also obtained by writing programs with dependent types.

We conclude our technical discussion with the development of a typechecker for the
simply typed lambda calculus. This presentation furnishes a view of raw lambda
terms as either being well-typed, or containing the source of a type error. The
implementation of this view is a proof that typechecking is decidable, and we show,
in the course of writing the program, how the type of such erroneous terms emerges
from the problem decomposition.

Acknowledgements

We gratefully acknowledge the support of the EPSRC, through grants GR/N 24988
and GR/R 72259. We also thank the organisers of Dagstuhl seminar 01141, ‘Se-
mantics of Proof Search’, where we presented preliminary versions of some of these



4 Conor McBride and James McKinna

ideas. Our main debt, however, is to the programmers who have inspired us: Rod
Burstall, Fred McBride and Phil Wadler.

2 Programming with Decision Trees

We present a high-level syntax for functional programming in a dependent type
theory. A function is defined by giving its type signature in a natural deduction
style, and writing its decision tree, describing the hierarchical structure of tests
by which it divides its arguments into finer and finer cases. In effect, a decision tree
provides a compact notation for a much larger term in the raw type theory which
may be generated in full by applying proof tactics in a top-down fashion, directed by
the nodes of the tree. In this paper, we focus on the notational aspects, and direct
the reader interested in the underlying terms to the existing literature (McBride,
1999; McBride, 2001b).

Each node of a decision tree is labelled with a head—a word borrowed from the
vocabulary of logic programming, here used to mean the function symbol applied
to patterns. Internal nodes specify a method by which this head can be refined,
leading to a collection of heads with more detailed patterns, addressed by decision
subtrees. The leaf nodes of a decision tree, signalled by the — symbol, supply
a result—an expression over the variables occurring in the patterns, giving the
function a return value for that head.

This contrasts with the usual presentation of pattern-matching (Burstall, 1969;
McBride, 1970), where a function is given by a prioritised association list map-
ping heads to results. Our decision trees resemble the output of Augustsson’s algo-
rithm for compiling flat pattern matching into a hierarchy of ‘simple’ case expres-
sions. (Augustsson, 1985).

The identity function has a one-node tree:

let t: T

Note that we presume any free variables occurring in the type signature, e.g. T
above, to be universally quantified implicitly in the type of the function. These
quantifiers are inserted as far to the left as type dependency permits, and we write
them longhand, when we absolutely must, with Pollack’s | notation (Pollack, 1992).
The actual type of iden is VT|Type.T — T. If we want to make such arguments
explicit in applications, we subscript them: ideny is the identity function for the
natural numbers.

We imagine that decision trees will be constructed interactively. Indeed, this is
precisely the mode of operation supported by the proof assistant ALF and its
successors (Magnusson, 1994; Coquand & Coquand, 1999). An open decision tree
contains open nodes which await either a method or a result. These effectively
pair goal types in the underlying theory, with their corresponding heads. The type



The view from the left 5

signature of a function determines the initial open tree—a single node whose head
has a fresh pattern variable for each argument. We may summarise of the status
of an open node in more detail, giving its context of pattern variables, and a
type which labels the actual result type with its corresponding head. A typical
development thus begins:

let 7 RE

8]y 81

Z:8 by (£ : R[z])

We use de Bruijn’s telescope notation to indicate a sequence of typings, such as
Z : S (de Bruijn, 1991). The notation R[Z] indicates that R is a term over the Z,
and we denote instantiations of the # with terms §in R by R[3].

Our practice will be to write an incomplete program as a type signature with an
open tree, then to summarise any open nodes of interest below. At any stage, an
open node will have a summary resembling

Z:X b (£5[F] : R[FE])
We may close a node by supplying a result r[Z] in R[p[Z]], yielding
£l o 3]

We grow a decision tree by applying a method to an open node, acquiring a col-
lection of open subnodes. In order to specify a method, we must explain how to
compute the summaries of the subnodes from the summaries of the original. The
implementation of a method must perform the corresponding proof step, reducing
the original goal to the subgoals given by the subnodes. In effect, our approach
augments traditional construction by refinement with the bookkeeping of heads via
annotations in types.

The next two sections specify two such methods, both of which have ready im-
plementations given by established proof tactics. The ‘by’ method supports case
analysis and structural recursion; the ‘with’ method introduces an intermediate
computation for subsequent analysis. With-nodes offer new notational convenience,
even when working with simple types. However, it is in the presence of inductive
families of datatypes that these two methods show their true potential.

3 By-nodes

By-nodes invoke known methods of analysis, yielding subnodes which have access
to more information. Their implementation is given by McBride’s E1imUnify tactic,
details of which can be found in (McBride, 2001b). By-nodes support the application
of arbitrary case analysis and recursion operators. Every inductive family comes
equipped with ‘standard’ operators for constructor-case analysis and constructor-



6 Conor McBride and James McKinna

guarded recursion, hence by-nodes easily subsume Coquand’s notion of pattern-
matching for dependent types, in which the connection to constructors is hard-
wired (Coquand, 1992). Let us consider case analysis first, then add recursion later.

3.1 Case Analysis

A simple example is found in the ‘bind’ function, {(, for the Maybe monad.

A : Type a: A
data Maybe A : Type where yes a : Maybe A no : Maybe 4
ot A2 f'\fzyl?ehljayb:é Maybed ¢, pyMaybe-Case s
flyesa +— fa
f{no — no

Note that the program is the whole tree, grouping a node with its subtrees explic-
itly. Later in this section, we shall examine ways to reduce this textual overhead,
inferring standard by-nodes from the textual clues their offspring inherit, but for
now, let us write our programs in full.

The eliminator e in ‘by e’ must have a type which abstracts a scheme of pattern
matching and/or recursion. The type of Maybe-Case z is

V®:Maybe A — Type. (Va:A. ® (yesa)) —» (Pno) —» Pz

This type asserts that in any setting, abstracted by ®, x can be split into the
patterns (yes a) and no. It is the type of an ‘elimination rule’ for Maybe instantiated
to eliminate a particular ‘target’. We call such types schemes, and we have a little
syntactic sugar for them. Let

e: {073: 1< B :X)®q |...| (% :X,) @3}
abbreviate e : V®:Vi:I. Type. (V2 : X1.® §1) = - (V3 : Xn. ® G,) = ® 7

Maybe-Case z : {® z: Maybe A < (a: A) ® (yesa) | () ® no}

Logically, the type of a scheme asserts that any values of form § must match at
least one of the @;. A program must explain what to do for each possible match.
Note that we use ¢’s for patterns in schemes, to distinguish them from the p’s in
heads. A program must explain what to do for each possible match: we acquire a
subnode for each g; which unifies with §.

At the type theory level, the implementation chooses a suitable value for ®. McBride
calls this value the motive, because it explains the purpose of the elimination. The
motive codes up the unification problem as a set of equations. The full details can be
found in (McBride, 2001b), but we recaptiulate the basic technique, a commonplace
of theorem-proving with inductively defined relations. For an open node,



The view from the left 7

-

7:X b (fP[7] - R[p[Z]))
we take
® = \Ni:I.Vi:X.7= qd — (£ p[7] : R[PIT]])

We write i = g for a series of equational hypotheses and refl ¢ for the sequence of
canonical proofs that each ¢ equals itself. We now have

ed? ... 7, Z(refl §) : (fP[Z] - R[P[Z]])
where each ?; is a subgoal corresponding to a case of the scheme
% Xj; X; 4= 4+ (£ (7] : RIFIE])

The machine now simplifies the equations §; = § by first-order unification, using
the substitutivity of equality and the basic properties of datatype constructors.
We use the algorithm introduced in (McBride, 1998). This replicates within type
theory the unification kept implicit in (Coquand, 1992). There are three possible
outcomes: it may compute a most general unifier ¢; taking Z, Z; to terms over some
T X J; it may show that the equations have no unifier, yielding a vacuous solution
for 7;; it may get stuck on a non-constructor equation.

If unification gets stuck for any case, the machine rejects the by-method. Otherwise,
it forms a by-node, with the unified subgoals as its subnodes:

z}: X} ko (£ plo;@] = Rlplo;]))

These subnodes specify the continuations which must be passed to eliminator so
that it can handle each possible outcome. In our Maybe-Case z example, z unifies
with each pattern, so we must supply both a ‘success’ and a ‘failure’ continuation.

f p[Z] bye e.g. flz by Maybe-Case z
flyesa ?
f {no ?

f plo;z] 7

Unification gives us the overlap between the patterns being split and the patterns
in the cases of the scheme. When we work with dependent types, this can simplify
some cases and rule out others altogether. The ‘tail of a vector’ has become the
routine example. The family Vect defined below, refines the type of lists with an
index making the lengths of vectors explicit. We choose to put the head of a vector
on the right, as this suits our later examples, where they represent typing contexts.

A:Type =n: N
Vect An : Type where € : Vect A0

zs : VectAn =z : A
zs = ¢ : Vect A (sn)

data

The Vect family has a single case analysis operator:



8 Conor McBride and James McKinna

Vect-Caseg,, zs : {2 n:N 2s:Vect An <«
()®0e
[(n:N; zs:Vect An; z: A) ® (sn) (zs = z)}

Now, consider the programming problem

zs : Vect A (sn)

i ?
vtailzs : Vect An vtail zs 7

let

A:Type; n:N; xs: Vect A (sn) b» vtailzs : Vect An

When we apply the method ‘by Vect-Case zs’, we are splitting a nonempty vec-
tor. Unification rules out the possibility of the £ constructor. The decision tree is
extended with only one subnode, which we may readily close:

vtail 2s by Vect-Case zs
[ vtail (zs :: 7) — s

In general, a single by-node may tell us about a many pattern variables, as well as
refining the result type of the function. This is as it should be: we should expect
the information obtained by testing to show up in more informative types which
legitimize a wider range of subsequent activity.

3.2 By-nodes for Recursion

There is nothing to prevent ‘inductive hypotheses’ occurring in the scheme of a
by-node eliminator. For example, the traditional notion of primitive recursion for
N is given by the scheme

N-Elimn : {¢n:N g ()®0|(n:N; &n)d(sn)}

When we build a by-node with such a scheme, the context of the s-subnode acquires
an inductive hypothesis, representing a set of recursive calls. The head annotation,
copied from the original node into the motive, now tell us exactly which calls are
permitted. For example

n,m : N

let n+m : N

n+ m by NElim n
0+m +—» m

sn+m 7

n,m:N;(m' :N){(n+m' : N) k2 sn+m : N

In our example, we may call n+ m/', for any m’. We might define + tail recursively,
closing the node with n + sm; we might also return s(n + m). More generally, we
may make any recursive call for which the machine can find an appropriate head
annotation in the context.

There is no hard-wired notion of recursion. We are free to use any scheme, provided



The view from the left 9
we can find an eliminator which gives it an operational semantics. We could even

add general recursion by asserting

z: T
generalz : {®z: T Q (z:T;Vy:T.®y) Pz}

Logically, this is a bare-faced lie, but it can be given the obvious ‘free beer tomorrow’
operational semantics.

Even without going this far, we do not have to try too hard to improve on primitive
recursion. For each inductive family of datatypes, F, the machine automatically
constructs an operator, F-Rec, which permits recursion to strip off more than one
constructor per step. For example,

N-Recn : {2n:N q (n:N; NMemo & n) & n}

N-Memo & n is the type of a data structure which holds a value in ® n' for each
strict subterm n' < n. Giménez defines this structure inductively (Giménez, 1994);
McBride defines it by computation on n (McBride, 1999):

d: N> Type =n : N

let N-Memo ® n : Type

N-Memo ¢ n by N-Elim n
N-Memo® 0 + Unit
N-Memo @ (sn) — N-Memo ®n x ®n

The more n is instantiated with constructor patterns, the more N-Memo ¢ n
expands to reveal ® for each guarded subterm, the more recursive calls become
available simply by projection.

The general construction for F-Memo and F-Rec is given in (McBride, 1999).
Nesting F-Rec by-nodes on a sequence of arguments delivers (at least) the strength
of their lexicographic combination, where ‘outer’ arguments may remain fixed if
‘inner’ ones decrease. The equational constraints in the motive reappear in the
‘inductive hypotheses’ as matching problems which have a trivial solution exactly
when the recursive call matches the original head.

The separation of recursion from case analysis gives much greater flexibility to the
programmer, where primitive recursion forces an immediate case analysis on any
argument to which it is applied. For example, we may write the <’ test for N by
recursion on its second argument:

let % <’y byN-Recy
- 7 z <’y byN-Case z
0<’y — true
st <’y byN-Case y
sz2<’0 + false
st<’sy = z<’y

This freedom becomes even more important when working with dependent types.



10 Conor McBride and James McKinna

We may wish to write a program over some z : F' y which does its case analysis
on z but is recursive on the index y, which may have a totally unrelated struc-
ture. Indeed, this is how the first-order unification algorithm is given a structurally
recursive presentation in (McBride, 2001c).

3.3 Hiding Obvious By-nodes

The full decision tree for <7 makes quite cumbersome reading, even if interactive
tools help with the writing. We can reduce this burden wherever the constructor
symbols in the patterns give us a hint that standard case analysis and recursion
operators have been used. We should like to flatten the standard parts of decision
trees as much as possible, provided the erased structure, or at least an equivalent
structure, can be recovered.

Firstly, outermost F-Rec nodes can be removed. The space of possible lexico-
graphic combinations of subterm orderings on a fixed number of arguments is
readily searched. Indeed, Abel and Altenkirch give an elegant algorithm for dis-
covering lexicographic constructor-guarded recursion which extends to mutually
defined functions (Abel & Altenkirch, 2000).

Secondly, F-Case nodes can be replaced by a flat collection of their subnodes,
provided there is at least one. The presence of an unexplained constructor symbol
in a pattern can be used as a prompt to insert a by-node which does explain it.
Cornes gives an algorithm which serves exactly this purpose in (Cornes, 1997).
However, we cannot expect the machine to recover a hierarchy of case analysis
which effectively proves that a type is empty—type inhabitation is undecidable.
For example, given the family of finite datatypes

n : N i : Finn
data Finn : Type where f0, : Finsn  fs, ¢ : Finsn

the following program cannot be reduced:

let 1 F|n0

empty i : Unit empty i by Fin-Case ¢

We could choose to allow the machine to search a little for emptiness proofs, perhaps
trying one step of case analysis on each pattern variable. This would allow the above
program to be given by its type signature alone! Even without this extra work, many
familiar programs are flattened entirely:

let _x;& 0 =0 > true
z ="y : Bool N

0 ="sy > false
st="0 > false
st="sy = r=y

Of course, in trying to reconstitute the full decision tree for =’, we can choose



The view from the left 11

recursion on either argument and case analysis in either order. We see no reason to
be particular about which choice the machine makes, provided that case analysis
on families is preferred to case analysis on their indices: it seems foolish to examine
an index, when the same information, forced by the type, can be obtained for free
by unification.

4 With-nodes in Decision Trees

Case analysis on arguments may not determine the entire control flow through
a function, nor expose all the information required to compute its result. Some
functions must analyse the results of intermediate computations. A pure pattern-
matching notation forces these computations to be invoked on the right-hand side,
dislocating a part of the decision process. For example, consider the function which
tests if a given label is in the domain of an association list—we use vectors for the
lists and numbers for the labels.

les : Vect(Nx X)m n : N

let
¢ Izs dom’ n : Bool

e dom’ n > false
lzs :: (I,z) dom’ n > if I = n then true else lzs dom’ n

Similarly, we must lurch rightwards to unpack a recursive call:

zys : Vect (Ax B)n
unzip zys : Vect An x Vect Bn

let

unzip € ~ (g,€)
unzip (zys :: (z,y)) — case unzip zys
of (ws,ys) — (xs = z,ys = y)

Worse, we may be forced to make a computation on the right before we are sure to
have finished decomposing the arguments on the left: Consider testing if one tree
is a subtree of another (presuming the equality test has been defined):

let s,t? : tree
ssub’ t : Bool
ssub’t > if s =7 ¢ then true
else case t
of leaf — false
tynodet, +— ssub’t orssub’

In the case of Boolean testing, the guard notation, to our knowledge introduced
in (McBride, 1970) and now standard in Haskell, offers some help. This allows for
Boolean conditions—guards—to be attached to a head: once the pattern variables



12 Conor McBride and James McKinna

have been bound, these must evaluate to true for the match as a whole to be
successful; otherwise the machine resumes matching with the remaining heads.
However, true guards throw us to the right, perhaps before we know all we need.
Further, guards have nothing to offer the non-Boolean intermediate value.

If our decision trees find themselves in need of some critical information at any
point in their analysis, we permit them to ask for it. For example, when we have
reached this stage in the development of unzip,

unzip (zys = zy) ?
we can trigger the recursive call which rearranges zys, by creating a with-node:

unzip (zys :: ry) with unzip zys
[unzip (zys :: zy) ||  =@sys 7

A with-node invokes an intermediate computation—a cut-term—and makes its
result available for analysis on the left by adding an extra column to the head,
containing a fresh pattern variable. The || symbol persists in the subtree of the
with-node separating the new cut-pattern from the old head. This subtree may
now make further analysis of both new and old data. We may now add (and then
flatten) by-nodes which apply x-Case to extract both heads and tails from their
respective tuples, then build the result. The full code for unzip becomes:

zys : Vect (A x B)n
unzip zys : Vect An x Vect Bn

let

unzip € — (g,¢€)
unzip (zys : zy) with unzip zys
[unzip (zys : (z,y)) || (ws,ys) > (zs: z,ys = y)
Similarly, the subtree test becomes much clearer if we pull the equality test to the
left, just as if it were a Boolean guard:

let s,t7 : tree
ssub’ ¢ : Bool
ssub’ t withs =" ¢
ssub’ t || true > true
ssub’ leaf | false > false
ssub’ (t1 node t2) | false — s sub’ t or s sub’ t

By way of focusing attention where it is needed, we permit the omission of the text
left of the || where it would simply copy that of the node above:



The view from the left 13

lzs : Vect(Nx X)m n : N

let =
lzs dom’ n : Bool

e dom’ n > false
lzs =2 (I,z) dom’ n withl =" n
| true +— true
| false +~ izs dom’n

Of course, we could have exploited the Boolean nature of dom’ to fold the testing
into an or, as we did with sub’. The same is not true for the projection function,
assoc, an example suggested by Pollack, drawn from his experiences with coding
records in type theory (Pollack, 2000). In our world of total functions, the latter
presents its own problems: what are we to do if the label does not occur? One
approach is to lift assoc to a Maybe type. Another is to make occurrence in the
domain a precondition to the application of assoc.

The use of partial operations with de facto preconditions is a common idiom in
simply-typed programming, functional or not, but its correct deployment is left
to the programmer’s conscience. Dependent types allow us a number of ways to
enforce preconditions through type information. Perhaps the least radical of these
comes by reflecting Boolean values as types via the following family:

data b : Bool

Sob: Type Vhere

oh : Sotrue

Of course, we could define So computationally, as the function taking true to Unit
and false to Empty, but we find the family a better way to document our usage of
the singleton or empty type. We may now impose a Boolean precondition b on an
operation by demanding an extra argument of type So b. For example,

lzs : Vet (Nx X)m n : N p : So(lus dom’ n)
assocltsnp : X

let
We can often satisfy the precondition without computing it at run time if the label
was demonstrably put in the list. We begin as we did with dom’:

assoc 5 np 7

assoc (lzs = (I,z))np ?

The ¢ case should be impossible, and it is. The type of p is So (¢ dom’ n), which
reduces to So false, clearly empty. We write:

assoc e n p by So-Case p

What of the other case? What is the type of its p, and how do we exploit it,
depending on the outcome of I =7 n? It is here that we need a more precise account
of with-nodes. Consider a programming problem

Z:X F (£ : R)



14 Conor McBride and James McKinna

When we attempt to apply the method ‘with ¢’, we may divide the dependency
graph of the 7 : X in two, with the fewest Z, : X; below such that ¢ is well-typed,
and the remaining %, : )-fa above. Up to a dependency-respecting permutation, our
programming problem is

fb:)_fb;fa:)_fal—y (fp : R)  where :E'b:)-bet:T

We compute the telescope Z, : X:; and the type R’ by syntactically replacing every
occurrence of the normal form of ¢ in the normal forms of the X, and R by a fresh
variable w and we check that this abstraction has not broken any typings where
the value of ¢ was critical. That is, we check

T Xy w: T; i’a:j(z F R': Type
If this check fails, we reject the with-node. If all is well, we pose the subproblem
B Xy, w:T; 2 : X bo (7| w: R

A solution to this problem yields a solution to the original when w is instantiated
with ¢. In fact, a with-node’s immediate child is the root node for a new locally
defined function, f’ which has access to everything in the parent context (including
memo structures) and the new argument w. f 7 || w is just a convenient display
syntax for f' Z, w 7. In effect, the with-node is just the programming analogue of
CoQ’s Pattern tactic (Coq, 2001).

Now we know the type of p in the ::-case of assoc:
.3 p:So(lzs :: (I,z) dom’ n|| 1 = n) ¢ (assoc (lzs = (l,z))np : X)

The evaluation of dom’ has got stuck just inside its with-node, because I =% n
is not a constructor. Nor is it a variable, so we cannot simply do Bool-Case on it,
but we now have the means to turn it into a variable! We were going to test [ =’ n
anyway, but the with-node also abstracts its term from the type of p.

assoc (lzs :: (I,z)) npwithl ="n
[ b 7
...;p:So(lzs :: (I,z) dom’ n|| b) - (assoc (lzs == (L,z))np| b : X)
Case analysis on b now allows the type of p to reduce still further:

assoc (Izs :: (I,z)) npwithl =" n
| true ?
| false ?

...; p:Sotrue F. (assoc (lzs :: (I,z)) np| true : X)
...;p:So(lzssdom’n) F» (assoc (lzs = (I,z)) np | false : X)

We may close both nodes. Here is the finished program:



The view from the left 15

lzs : Vet (Nx X)m n : Np : So (lzs dom’ n)

let assoclzsnyp : X
assoc € np by So-Casep
assoc (lzs :: (I,z))npwith 1="n
[ true — oz
|| false — assoclzsnp

Pollack suggests a heterogeneous variant of this problem, associating each label
with a dependent pair containing a type and a term with that type in the data
structure Vect (N x 3A:Type. A) m. We should be able to write a function assoc”
to project out the type for a label, then make assoc produce a term of the type
given by assoc”, with dom’ a precondition to both! Our notation handles this
easily, using with-nodes to synchronize all three functions.

The introduction of with-nodes helps us to tidy up previously disparate fragments
of testing, collocating them on the left by allowing the extension of heads with cut-
patterns corresponding to the results of intermediate computations. The treatment
is uniform where guards privilege Boolean values, and the acquisition of new data
does not preclude further analysis of the old data within the same decision process.

Furthermore, by bringing intermediate values—whose types are Gentzen-style cut-
formulae—into the context under scrutiny and abstracting them from types, we
give a clean account of the effect their subsequent analysis has on our knowledge
of the rest of the problem. In contrast, a free-floating case-expression must either
re-abstract every other piece of information it affects, or else yield highly non-local
consequences. As we shall shortly see, with-nodes have great impact when used in
conjunction with case analysis on dependent families.

5 Views through Inductive Families

We have said that by-nodes permit the application of non-standard eliminators,
but we have thus far given no examples where we exploit this potential. In this
section, we shall give several such examples, and we shall show how these non-
standard eliminators may be manufactured from the standard ones, yielding the
functionality of Wadler’s ‘views’, and more (Wadler, 1987). Let us begin where he
did, by providing the ‘cons’ view of our ‘snoc’-vectors, where cons is defined:

let z : A xzs : Vect An

T cons & HEeng
z cons zs : Vect A (sn)

z cons (zs :: y) +— (zconszs) ::y
We may now specify the ‘cons’ view:

backwards s : { ®n:N; axs:VectAn
N 0@ 0 €
|(z:A; zsVect An) & (sn) (zconsuzs)}



16 Conor McBride and James McKinna

This view can be used to write the vlast function. Just as with vtail, unification
removes the € case:

zs : Vect A (sn)

let Viast zs - A4 vlast zs by backwards zs

[ vlast (z cons zs) — =

How might we implement backwards? Schemes are, in effect, the types of poly-
morphic continuation combinators. We could write a continuation-passing program,
making use of the view recursively:

backwards € Dp. e — P
backwards (zs = x) ® ¢. ¢. by backwards zs
backwards (€ = x) D p. = GoxeE
backwards ((z cons zs) :: y) ® ¢ ¢ + ¢z (25 2 Y)

However, there is a first-order method to achieve the same effect which appears as a
recurring idiom in McKinna and Pollack’s work on formal metatheory (McKinna &
Pollack, 1999). Whenever they need to establish an alternative induction principle
for a relation R, they introduce the relation R’ which natively has that induction
principle, and then show that R’ includes R. We may do the same for Vect: instead
of showing backwards for every suitable &, we may show it for the smallest, turning
® into an inductive family and the continuations q; into its constructors:

zs : VectAn
data Back n zs : Type where back., : BackOe

z : A xzs : VectAn
back. z zs : Back (sn) (z cons zs)

We may show that Back covers the vectors:

let zs : Vect An
back zs : Back n zs

back € — back,

back (zs = x) with back zs

back (€ = z) || back. — back. z e
{back ((x cons zs) :: y) || (backe z zs) — back. z (zs :: y)

The definition of backwards is now trivial:

backwards TS P ¢. ¢, with back zs
backwards € ® @, @ || backe — ¢
backwards (z cons zs) ® ¢. ¢. || (back. z zs) — ¢,z TS5

In effect, backwards delivers the effect on zs of case analysis on back zs. The
actual composition of the ‘proof’ delivered by back is irrelevant. This is such a
simple and common construction that it can and should be done on the fly. We
introduce a derived form—the with-by-node, taking a ‘proof’ e whose type is an
instance of an inductive family F. This has the effect of ‘with e’, yielding cut-pattern



The view from the left 17

z, then ‘by F-Case z’, except that we omit z’s column from the new heads. This
makes backwards redundant, and simplifies back:

back € — back,
back (zs = x) with-by back s
back (€ = x) — back. z e

back ((z cons zs) :: y) — back. z (zs :: y)

What we have done is to explain non-standard pattern-matching via the refine-
ment of index information which naturally accompanies the standard notion of
case analysis for inductive families. We have also replaced a higher-order function
combining continuations with a first-order function combining constructors, invert-
ing Church’s encoding of datatypes via higher-order combinators in the A-calculus.
Turning closed fragments of function spaces into data, not merely compositional
and functionally interpretable but inductive, will, we hope, become a powerful com-
monplace of dependently typed programming. It is conceivable that programs which
compute such ‘concrete functions’ only to interpret them immediately—exactly the
behaviour of a with-by-node—can be transformed automatically into a more effi-
cient continuation-passing form by deforestation, a technique for which we also have
Wadler to thank (Wadler, 1990).

Wadler conceived his view notation as syntactic sugar for the insertion of mutally
inverse coercions between datatypes, one of which admits pattern-matching, the
other potentially abstract. The idea that a signature for an abstract data structure
might hide its actual representation, but nonetheless offer an admissible notion
of pattern-matching, overcomes a genuine problem in the engineering of modular
code. Programming with admissible notions of pattern-matching is exactly what
our by-nodes permit, with the bonus that the interface is given by a type which can
be required of an exported method in the usual way. Moreover, this type enforces
the ‘no junk’ direction of the bijection: Wadler is forced by an inexpressive type
system to trust the programmer.

The presentation of views through inductive families also makes it easy to state
‘no confusion’ as the requirement that the ‘covering’ function delivers the only
possible proof in each case. For example, to show that our ‘cons’ view of vectors
is unambiguous, we may prove the following uniqueness property of its covering
function:

b : Backn zs

goal back zs = b

5.1 Views for Testing

The essence of pattern-matching is to connect a test on data with the exposure of
the information to which we become entitled, given the test’s result, encapsulating
selector methods within a framework which ensures that they apply.



18 Conor McBride and James McKinna

Views allow us to extend that framework to a wider class of tests by functional pro-
gramming alone. We have no need to tinker with the implementation of pattern-
matching to achieve support for clearer code, nor need we accept the unbridled
search by which logic programs decompose data in terms of defined function sym-
bols. For example, the following view expresses the linear ordering on the natural
numbers N, incorporating both the subtraction operation with the conditions undr
which it is well-defined:

z,y : N
data Compare z y where complLtz y : Compare z (z + sy)
compEqz : Comparez z
compGtz y : Compare (y +5sz) y
let 2,y : N
compz y : Comparez y

comp 0 0 — compEq0

comp 0 (sy) — complLtOy

comp  (sz) 0 — compGt z 0

comp  (sz) (sy) with-by comp z y

comp (sz) (s(z+sy)) — complt(sz)y

comp (sz) (sz) — compkEq (sz)

comp (s(y +sz))  (sy) ~ compGt z (sy)

The Compare family refines the enumeration {LT,EQ,GT}, traditionally used to
type the decision function of an ordering, with indices which explain the implications
of the result for the data being compared. The type of comp tells us—and the
typechecker—that its result does actually pertain to its arguments, a fact we keep
to ourselves in the simply typed account. The program is not so far from the
traditional coding of comparison, subtraction, maximum and minimum operators,
and it does the job of all of them.

The same analysis applies, even more urgently, to the functions which decide equality
for datatypes. One bit is not very much information unless you know how it is
to be interpreted: how is the typechecker supposed to know that T[z] and T[y]
are the same type, just because a particular Boolean value—that of z =" y—
happens to be true? In this setting, the non-linear patterns in McBride’s thesis,
implemented via LISP’s EQUAL predicate (McBride, 1970), become more than a
notational convenience.

We can achieve this effect by giving the equality test a more informative type.
For example, let us define the equality test for the datatype Simp of simple type
expressions, which will prove useful in our example later on:

. S, T : Simp
data Simp : Type where o:Simp SDOT : Simp




The view from the left 19

We define a view, SimpEq’ which, for a given S : Simp, splits any T : Simp into S
or ‘anything else’. We shall need a type family coding up ‘Simp with S removed’,
and an embedding from that family back into Simp:

S : Simp

data Smp—3 : Type where
S' : Simp—S§
let S\S" : Simp
S, T : Simp
dat 2
aa SimpEq’ S T : Type simpSame § : SimpEq’ S S

T : Simp—T
simpDiff §” : SimpEq’ S (S\S")

We will ‘discover’ the constructors of Simp — S and the behaviour of S\S' as we
write the covering function, simqu?—by case analysis, then recursive views:

S, T : Simp

let . 7 T 7
simpEq S T : SimpEq" S T

simpEq’ o o — simpSame o
simpEq’ ) (o> ?
simpEq’ (§ D T) ) ?

simqu? (51 D Th) (S2 D Tp) with-by simqu? S1 Sa;
simpEq’ (SO T;) (SO Ty) with-by simpEq’ T} Tj;

?

simpEq" (SD>T) (SD>T) +~ simpSame(SD>T)
simpEq’ (§D> T) (S> T\T') ?
simpEq’ (SO Ty) (S\S' D Tb) ?

We now give Simp— .S constructors which just package the contexts of our four open
nodes and define S\ S’ to decode them in correspondence to the nodes’ patterns:

neqo S T : Simp —o o\(neqo § T) = 55T

negd : Simp— (SO T) (S D T)\negd = 0

S :Simp T :Simp—T
neqT 77 : Simp—(SD T)

S’ : Simp— S T, : Simp

neqS S’ T2 : Slmp— (S D Tl)

(SO T)\(neqTT") = SO T\T'

(S D) Tl)\(neqS S’ TQ) — S\Sl D Ty

We may now complete the definition of simpEq’:



20 Conor McBride and James McKinna

simpEq’ o o) — simpSame o
simpEq’ ) (§SDT) + simpDiff (neqo § T)
simpEq’ ($D T) o — simpDiff neqD

simpEq’ (S; D T)) (S, D T») with-by simpEq’ Sy S5;
simpEq’ (S D T;) (S D T,) with-by simpEq’ T} Tb;
simpEq’ (§D>T) (SDT) + simpSame(§ D T)
SOT) (SO T\T') + simpDiff (neqT T")
)

(
simpEq’ (
simpEq’ (S D Ty) (S\S' D Ty) +~ simpDiff (neqS S’ T»)

This construction can be made entirely systematic. The SimpEq’ family can be
made parametric on triples consisting of a type, its ‘subtraction’ type and the \
embedding. The second of these need not be defined inductively—it can be defined
by computation for every datatype. Indeed, given a universe construction for a
collection of inductive datatypes, this ‘system’ can be turned into a generic program.
In (McBride, 2001a), the first author gives just such a universe construction for
the regular datatypes—a single inductive family capturing every datatype in the
language closed under polynomial type functors and least fixed point.

5.2 Views for Selection

Selector operations allow us to extract the pieces of a data structure, but sometimes,
when programming with dependent types, we would like to know more—namely,
that the data structure really is the thing made from the pieces. Pattern-matching
delivers this information directly, and views allow us to extend its scope to more
fascinating varieties of selection.

For example, we may see an element of Vect An as an array of n A’s, indexed (safely)
by elements of Fin n, as defined above. That is, we may use fs™ f0,, : Fin (m + sn)
as an index into a vector of that length, chopping it into a prefix ys : Vect A m and
a suffix zs :: z : Vect A (sn), with z being the element so extracted. Let us first give
ourselves the language with which to express this:

m : N 4 : Finn 0 . .
let fs™ 4 : Fin(m + n) fs" i

"0 > fs(fs™ 4)

zs : Vect An ys : Vect Am
zs H ys : Vect A (m + n)

let s H € — TS

zsH(ys ny) = zsHys =y

We let ++ bind more tightly than :: to minimise the number of brackets in normal
forms. Observe that the arguments of + are the opposite way round to those of ++
because we are using ‘snoc-vectors’ and ‘cons-numbers’. Let us now state our view
of vectors as arrays and show that it covers:



The view from the left 21

zs : Vect An i : Finn
data Chop zs i : Type

zs : Vect An 1z : A ys : VectAm
chopGlue zs z ys : Chop (zs :: = ++ ys) (fs™ 10,,)

where

let Zs:VectAn 1 : Finn
chop zs i : Chopxzsi

chop (zs = x) fo — chopGlue zs z €
chop (zs 2 y) (fsi)  with-by chop zs 4
[ chop ((zs ::  +ys) = y) (fs (fs™ f0,,)) — chopGlue zs = (ys :: y)

Selection presented in this way appeals strongly to our visual sense of the structure
of data—we see as we do. Many other common functions could be given a similar
treatment, Pollack’s ‘association list’ example being a prime candidate. We leave
this as an exercise for the reader.

6 What do Decision Trees do?

We have presented our notation for programming with decision trees, and we have
asserted that these programs can be rendered as (rather large) terms in type theory
by the mechanisms which underpin known tactics in the domain of theorem-proving.
We have said relatively little about the equations which hold of such programs,
either at the level of their reduction behaviour or of the equational laws which
they satisfy. To some extent, this is because there is relatively little to say: the
operational effect of a by-node is given entirely by that of its eliminator applied to
the continuations generated from its subtrees. The instantiation of head patterns
comes from unification with scheme patterns, rather than any native understanding
of datatype constructors. We bring our own semantics.

Let us first consider what we might prove about the eliminators we use in by-
nodes and thus deduce about the functions we build from them. Eliminator schemes
are theorems which assert that their cases are exhaustive for the patterns being
analysed. They do not ensure that the cases are disjoint, or even that an individual
pattern is unambiguous. One can easily show that the pattern n + m captures all
natural numbers, but this alone does not determine which n and m will be chosen
at a given match. It is the eliminator itself which makes these choices. The more
we know about an eliminator, the more we know about the programs which use it.

We describe an eliminator with the additional property that its patterns are dis-
joint and unambiguous as a partition. There is a standard way to show that an
eliminator is a partition:



22 Conor McBride and James McKinna
given e :{®g:1 < (H: X))@ |...|(F:X,)® )}
i=1,
€ (I) ¢ = ¢j .i"j

The eliminator in a with-by-node arising from a view is a partition if and only if
the covering function has the uniqueness property defined above.

for each j, show

If every by-node in a program is a partition, then we may prove an equational law
about each leaf-node, conditional on equations relating the cut-patterns @ to the
original cut-terms :

for fp||@ — r

o1t = wy Untn = Wp,

we have =
fp=r
where o; is the composition of the substitutions which have been used to instantiate
pattern variables beneath the ‘with ¢;” node. We observe that the conditions are
trivial for cut-terms applying covering functions with the uniqueness property.

Even for by-nodes with overlapping schemes, we know that one of the continuations
must be applied, hence we can reason about functions which use them as if their
behaviour is nondeterministic. One way to do this is to formulate inversion princi-
ples for equations of the form f § = r which deliver a number of cases covering the
‘possible behaviours’ of f, but a discussion of this technique is outside the scope of
this paper. Systematic support for reasoning about decision tree programs remains
an active topic of our research. Overlapping views may provide us with the means to
give intuitive pattern-matching presentations of programs involving search, echoing
the McBrides’ experiments with ambiguous patterns in the late 1980s (McBride
& McBride, 1989). We plan to investigate the implementation of search via elimi-
nators with monadically lifted schemes, inspired by Wadler’s landmark account of
failure and backtracking through lists (Wadler, 1985).

Turning to the computational behaviour of decision trees, let us first observe that
we may regard every node as a program in its own right—it is a function from
its context to its result type. We may turn each node into a separate definition
which A-abstracts its context, then returns an appropriate value: for a leaf-node,
this is just the supplied result; a with-node applies its sub-node—exactly a cut in
the logical sense; a by-node passes its subnodes as continuations to its eliminator.
A decision tree thus becomes a tree of ‘lets’ in type theory.

If we allow a ‘native’ notion of pattern-matching, as proposed in (Coquand, 1992),
we can exploit the known properties of the standard F-Rec and F-Case operators
to replace clusters of our ‘lets’ with more complex programs. In particular, the
‘native’ behaviour of F-Case is exactly

F-Case (Cj .'Z"J) (0] (Z)"\/) (]5]' .’i"j



The view from the left 23

An eliminator which applies F-Case is thus trivially a partition. A tree of F-Case
applications delivers a covering in Coquand’s sense, and the corresponding cluster
of lets may thus be replaced by a single pattern-matching definition. Moreover, the
original tree structure tells us how to compile this definition, Augustsson-style.

Further, the projections from the memo-structure F-Memo, used to define F-Rec,
are computationally equal to the corresponding recursive applications of F-Rec.
We may thus merge a cluster of F-Rec lets, replacing the projections from memo-
structures with recursive calls.

The native pattern-matching programs which arise from these simplifications have
a reduction behaviour which holds at the level of conversion for the original defini-
tions (McBride, 1999). A simple simulation argument shows that the transformation
preserves strong normalization, and we conjecture that an argument by orthogo-
nality will deliver preservation of confluence. Decision trees built only from the
standard operators flatten into single ‘native’ programs, hence we know that for
these trees, — really means ~».

Decision trees which contain with-nodes or non-standard by-nodes nonetheless re-
duce to a set of mutually recursive native programs. McBride’s OLEG system (built
from spare parts of Pollack’s LEGO) has a suite of tactics for manufacturing such
sets of programs, interactively supporting the construction techniques which became
our ‘by-nodes’ and ‘with-nodes’. All the examples in this paper were developed in-
teractively using OLEG.

7 A Simple Typechecker

We now present, our main example, a typechecking view for simply typed A-terms in
Church style. We give a first-order inductive presentation of terms which follows a
long tradition in the literature, from McKinna and Pollack’s treatment of ‘Vclosed’
terms, through to Bellegarde and Hook’s monadic definition, recently rendered in
Haskell (via polymorphic recursion) by Bird and Paterson (McKinna & Pollack,
1993; Bellegarde & Hook, 1995; Bird & Paterson, 1999).

_ n:N i : Finn f,s : Termn
data Termn : Type where vari : Termn  appfs : Termn

S : Simp t : Term (sn)
lam St : Termn

Following Altenkirch and Reus, we may give an inductive presentation of just the
well-typed terms of a given type, in a given context (Altenkirch & Reus, 1999). This
amounts to writing down the rules of the type system in a syntax directed form:



24 Conor McBride and James McKinna

I' : VectSimpn T : Simp

data Good T T+ Type
I' : VectSimpn T : Simp A : VectSimpm
where
gVarT’' TA : Good(T':=: THA) T
f : GoodT' (SDT) s : GoodI'S t: Good(l':: §) T
gAppfs : Good' T glam St : GoodT'(SD T)

There is an obvious forgetful map, g, from Goods to Terms. We keep the type
explicit, because we would like to see the type when we use g in a pattern.

et 160 LT o p (var  TTA) e var (S f0,)

Tt : T
glhtslemn ¢ 1 (gAppfs)  — app(gf)(gs)
g(SD>T) (glamSt) — lam S (g T)

Let us now specify our typechecker as a view which tells us whether or not a given
Term is Good.

I' : VectSimpn t : Termn
TypeCheck’ T't : Type

t : GoodI' T t : BadT
good Tt : TypeCheck’ T'(g Tt) badt : TypeCheck’ T (b t)

data

where

We have not yet defined the type of Bad terms, nor its forgetful map, b. We shall
‘discover’ these in due course, just as in our development of the equality view. Here
are their respective formation rule and signature:

I' : VectSimpn t : Bad, T
data BadI' : Type let bt : Termn

The typechecker is fairly straightforward, using the chop view to access the context,
and the simpEq’ view to ensure that applications are well-typed. Let us begin by
taking the term apart:

let " I 3C\}/1eCtks?irlf_“F;"‘ Tt :C:errlz??‘t typeCheck? T (var 7) ?
ypetshec - lypethec typeCheck’ I’ (appfs) ?

typeCheck’ T (lam S t) ?
A variable is always well-typed. The chop view extracts its type from the context:

typeCheck’ T (var i) with-by chopT'i
[typeCheck’ (T :: T iy, A) (var (fs™ f0,)) + good T (gVarT' T A)
An abstraction is well-typed if its body is. We call the typechecker recursively. Let
us leave the ‘bad’ case for the time being:
typeCheck’ T (lam S t) with-by typeCheck’ (T :: S) ¢
typeCheck’ I' (lam S (g T t)) + good (8§ D T) (gLam S t)
typeCheck’ T (lam § (b t)) ?

To typecheck an application, we first make sure its ‘function’ really is functional:



The view from the left 25

typeCheck’ T (app f s) with-by typeCheck’ T f
typeCheck’ I (app (g0 f) s) ?
typeCheck’ T (app (g (SD T) f)s) ?
typeCheck’ I (app (b f) s) ?
If so, we proceed to typecheck the argument:
typeCheck’ T (app (g (S D T) f) s) with-by typeCheck’ T s
{typeCheck? T(app(g(SDOT)f)(gS's) 7
typeCheck’ T (app (g (5 D T) f) (b s)) ?

Once we know the argument’s type, we must check that it coincides with the domain
of the function:

typeCheck’ ' (app (g (S D T) f) (g §' s)) with-by simpEq’ § S’

typeCheck’ T (app (g (SO T) f) (g S 5)) + good T (gApp f s)
typeCheck’ T (app (g (SO T) f) (g (S\S") 5)) ?

We have five open nodes remaining. These correspond to the two basic type errors—
non-function application and application mismatch—together with the three cases
which propagate an internal type error outwards. It is now clear how to define Bad
and its forgetful map, b. Just as we did with simpEq’, we scoop up the contexts
and patterns from the open nodes.

f : Good,To s : Termn b (bNonFun f s)
bNonFunf s : BadT app (g of) s
f : GoodT (SO T) s : GoodI'(S\S’) b (bMismatchfs) —
bMismatch f s : BadT app(g (SO T)f) (g (S\9)s)
f : GoodD (SDT) s : BadTl b (bArgf s) —
bArgfs : BadT app(g (SO T)f)(bs)
f :Bad,I' s : Termn b (bFunfs) —
bFunfs : BadT app(bf)s
t : Bad (T :: §) b (bLam S t) —
bLam St : BadT lam S (b t)

We may thus close the five open nodes and present the completed typechecker:



26 Conor McBride and James McKinna

typeCheck’ T (var i) with-by chop I' ¢

[typeCheck’ (T :: T g, A) (var (fs™0,)) — good T (gVarT' T A)

typeCheck’ T (appf s) with-by typeCheck’ T f

[typeCheck’ T (app(gof)s) + bad (bNonFun f s)

typeCheck’ T (app (g (S D T)f)s) with-by typeCheck’ T s
typeCheck’ T (app (g (S D T)f) (g8 s)) with-by simpEq’ S S’
typeCheck’ T (app (g (SO T)f) (g Ss)) + good T (gApp [ s)
typeCheck F@Epp(g(SDT)f)(g(S\S")s)) + bad(bMismatch f s)
typeCheck C(app(g(SDT)f)(bs)) ~ bad (bArg f )

[typeCheck” T (app (b f) s) — bad (bFun f s)

typeCheck” T (lam S t) with-by typeCheck’ (T :: §) ¢

[typeCheck” T (lam S (g T t)) — good (S D T) (glam S ¢)

[typeCheck’ T (lam S (b t)) — bad (bLam S t)

This is not just a program: it is a proof that typechecking is decidable for the
simply typed A-calculus in Church style. It does not merely say ‘yes’ or ‘no’, but
rather explains each raw term as deriving by a forgetful map either from a typed
term or a broken term. Its type guarantees that the term being checked really is
the term it is given. Its analysis is concisely stated and imposes the conditions for
well-typedness (and its complement) just as they are expressed in the typing rules.

Moreover, as its recursive calls show, it represents these two possibilities in a
pattern-matching style, visibly delivering either a well-typed term which may be
passed to an exception-free interpreter in the style of Augustsson and Carlsson (Au-
gustsson & Carlsson, 1999), or a useful error diagnostic. The latter locates the
leftmost type error in a raw term—its ‘principal gripe’. It could easily be adapted
to find every application of a well-typed non-function or mismatched application
between two well-typed terms—useful information not only for error reporting, but
also for type debugging and repair, as suggested by McAdam (McAdam, 1999).

8 The Conclusion is: Further Work required

The main discovery we have made in the light of this research is how little we know
about functional programming with dependent types. It is no longer credible to
conceive of dependently typed programming merely as a means to recover the legit-
imacy of programs which were lost to us when we moved from untyped languages
to the Hindley-Milner system. We take its inherent complexity as an opportunity,
rather than a problem, and we hope we have given good reason to believe that
a programming notation which is sensitive to the new interplay between pattern-
matching, intermediate computations and result types can exploit this potential
with the minimum of difficulty.

More generally, we take the explosion of power which dependent types bring to
programming as a cue to re-evaluate design choices about the language with which
we express programs, the tools with which we construct programs, and the programs



The view from the left 27

we choose to write in the first place. This includes reassessing the interfaces and
implementations of standard data structures and algorithms, no less than any other
programs.

We believe that the new languages, tools and libraries will profit considerably from
the experience gained in the wider domain of interactive problem-solving with de-
pendent types. Our new analysis of the left-hand sides of functional programs stems
directly from sequent calculus. By adding the cut rule (with-nodes) and permitting
arbitrary left rules (by-nodes), we introduce a compositional language of analysis
on the left to match the compositional language of synthesis on the right. We credit
Wadler with the insight that, by constructing views, we can and should choose to
adapt our perceptions of data to match our conceptions of data. We reify his views
directly, by our treatment of the left. So hurrah for Wadler! Welcome to the new
programming.

References

Abel, A.; & Altenkirch, T. (2000). A predicative analysis of structural recursion. J.
functional programming, March.

Altenkirch, Thorsten, & Reus, Bernhard. (1999). Monadic presentations of lambda-terms
using generalized inductive types. Computer Science Logic 1999.

Augustsson, L., & Carlsson, M. (1999). An ezercise in dependent types: A well-typed
interpreter. www.cs.chalmers.se/ augustss/cayenne/interp.ps.

Augustsson, Lennart. (1985). Compiling Pattern Matching. In: (Jouannaud, 1985).

Bellegarde, Francoise, & Hook, James. (1995). Substitution: A formal methods case study
using monads and transformations. Science of Computer Programming.

Bird, Richard, & Paterson, Ross. (1999). de Bruijn notation as a nested datatype. Journal
of Functional Programming, 9(1), 77-92.

Burstall, Rod. (1969). Proving properties of programs by structural induction. Computer
journal, 12(1), 41-48.

Coq, L'Equipe. 2001 (Apr). The Coq Proof Assistant Reference Manual. pauil-
lac.inria.fr/coq/doc/main.html.

Coquand, Catarina, & Coquand, Thierry. (1999). Structured Type Theory. Workshop on
Logical Frameworks and Metalanguages.

Coquand, Thierry. 1992 (June). Pattern Matching with Dependent Types. Proceedings of
the Logical Framework workshop at Bastad.

Cornes, Cristina. (1997). Conception d’un langage de haut niveau de répresenatation de
preuves. Ph.D. thesis, Université Paris VII.

de Bruijn, N.G. (1991). Telescopic Mappings in Typed Lambda-Calculus. Information
and computation, 91, 189-204.

Dyckhoff, R., & Pinto, L. (1998). Cut-elimination and a permutation-free sequent calculus
for intuitionistic logic. Studia logica, 60, 107-118.

Gentzen, G. (1935). Investigations into logical deduction. North-Holland. Chap. 3 of (Sz-
abo, 1969).

Giménez, E. (1994). Codifying guarded definitions with recursive schemes. Pages 89-59 of:
Dybjer, Peter, Nordstrém, Bengt, & Smith, Jan (eds), Types for proofs and programs,
’94. LNCS, vol. 1158. Springer-Verlag.



28 Conor McBride and James McKinna

Herbelin, H. (1995). A A-calculus structure isomorphic to sequent calculus. Pages 67-75
of: Proceedings of CSL’94. LNCS, vol. 933. Springer-Verlag.

Huet, G., & Plotkin, G. D. (eds). 1990 (May). Electronic Proceedings of the First Annual
BRA Workshop on Logical Frameworks (Antibes, France).

Jouannaud, Jean-Pierre (ed). (1985). Functional Programming Languages and Computer
Architecture. LNCS, vol. 201. Springer-Verlag.

Magnusson, Lena. (1994). The implementation of ALF—A Proof Editor based on Martin-
Léf’s Monomorphic Type Theory with Explicit Substitutiton. Ph.D. thesis, Chalmers
University of Technology, Gdteborg.

McAdam, Bruce J. (1999). Generalising techniques for type explanation. Pages 248-252
of: Scottish functional programming workshop. Heriot-Watt Department of Computing
and Electrical Engineering Technical Report RM/99/9.

McBride, Conor. (1998). Inverting inductively defined relations in LEGO. Pages 236-253
of: Giménez, E., & Paulin-Mohring, C. (eds), Types for proofs and programs, ’96. LNCS,
vol. 1512. Springer-Verlag.

McBride, Conor. (1999). Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, University of Edinburgh.

McBride, Conor. (2001a). The Derivative of a Regular Type is its Type of One-Hole
Contexts. Electronically available.

McBride, Conor. (2001b). Elimination with a Motive. Callaghan, P., Luo, Z., McKinna,
J., & Pollack, R. (eds), Types for proofs and programs (proceedings of the international
workshop, types’00). LNCS. Springer-Verlag. (in preparation).

McBride, Conor. 2001c (Feb.). First-Order Unification by Structural Recursion. To appear
in the Journal of Functional Programming.

McBride, F., & McBride, C.T. (1989). Craft ’89. Queen’s University, Belfast. User Manual.

McBride, Fred. (1970). Computer aided manipulation of symbols. Ph.D. thesis, Queen’s
University of Belfast.

McKinna, J., & Pollack, R. (1993). Pure type systems formalized. Bezem, M., & Groote,
J.F. (eds), Int. conf. typed lambda calculi and applications. LNCS 664. Springer-Verlag.

McKinna, J., & Pollack, R. (1999). Some lambda calculus and type theory formalized.
Journal of automated reasoning, 23, 373-409. (Special Issue on Formal Proof, editors
Gail Pieper and Frank Pfenning).

Pollack, Robert. 1992 (May). Implicit syntaz. An earlier version of this paper appeared
in (Huet & Plotkin, 1990).

Pollack, Robert. (2000). Dependently Typed Records for Representing mathematical
structure. Aagard, & Harrison (eds), Theorem Proving in Higher Order Logics, TPHOLs
2000. LNCS, vol. 1869. Springer-Verlag.

Nordstrém, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Léf’s type
theory: an introduction. Oxford University Press.

Pym, D. (1990). Proofs, search and computation in general logic. Ph.D. thesis, University
of Edinburgh. Available as CST-69-90, also published as ECS-LFCS-90-125.

Szabo, M. (1969). The collected papers of Gerhard Gentzen. North-Holland.

Wadler, P. (1994). A Curry-Howard isomorphism for sequent calculus. Talk given at the
EPSRC LoGFIT Final Workshop, Fairbairn House, Leeds.

Wadler, Philip. (1985). How to Replace Failure by a list of Successes. In: (Jouannaud,
1985).

Wadler, Philip. (1987). Views: A way for pattern matching to cohabit with data abstrac-
tion. Popl’87. ACM.



The view from the left 29

Wadler, Philip. (1990). Deforestation: transforming programs to eliminate trees. Theoret-
ical computer science, 73, 231-248. (Special issue of selected papers from 2’nd ESOP.).



