
I am not a number: I am a free variable

Conor McBride and James McKinna

June 8, 2004

Abstract

In this paper, we show how to manipulate syntax with binding using a
mixed representation of names for free variables (with respect to the task in
hand) and de Bruijn indices [dB72] for bound variables. By doing so, we retain
the advantages of both representations: naming supports easy, arithmetic-free
manipulation of terms; de Bruijn indices eliminate the need for α-conversion.
Further, we have ensure that not only the user but also the implementation

need never deal with de Bruijn indices, except within key basic operations.
Moreover, we give a representation for names which readily supports a

power structure naturally reflecting the structure of the implementation. Name
choice is safe and straightforward. Our technology combines easily with an
approach to syntax manipulation inspired by Huet’s ‘zippers’[Hue97].

Without the technology in this paper, we could not have implemented
Epigram [McB04]. Our example—constructing inductive elimination opera-
tors for datatype families—is but one of many where it proves invaluable.

Prologue

In conversation, we like to have names for the people we’re talking about. If we
had to say things like ‘the person three to the left of me’ rather than ‘Fred’, things
would get complicated whenever anyone went to the lavatory. You don’t need
to have formalized the strengthening property for Pure Type Systems [MP99] to
appreciate this basic phenomenon of social interaction.

It is in the company of strangers that more primitive pointing-based modes of
reference acquire a useful rôle as a way of indicating unambiguously an individual
with no socially agreed name. Even so, once a stranger enters the context of the
conversation, he or she typically acquires a name. What this name is and who
chooses it depends on the power relationships between those involved, as we learned
in the playground at school.

Moreover, if we are having a conversation about hypothetical individuals—say, Al-
ice, Bob and Unscrupulous Charlie—we have a tendency to name them locally to
the discussion. We do not worry about whether Unscrupulous Charlie might ac-
tually turn out to be called Shameless David whenever he turns up. That is, we
exploit naming locally to assist the construction of explanations which apply to
individuals regardless of what they are called.

1

1 Introduction

This paper is about our everyday craft. It concerns, in particular, naming in the
implementation of systems which manipulate syntax-with-binding. The problems
we address here are not so much concerned with computations within such syntaxes
as constructions over them. For example, given the declaration of an inductive
datatype (by declaring the types of its constructors), how might one construct its
induction principle? We encounter such issues all the time in the implementation
of Epigram [MM04]. But as we develop new technology to support programming
and reasoning in advanced type systems, but we must handle them effectively with
today’s technology. We work in Haskell and so do our students. When they ask us
what to read in order to learn how to write the kinds of programs they will need,
we tend to look blank and feel guilty. We want to do something about that.

Let’s look at the example of constructing an induction principle for a datatype.
Suppose someone declares

data Nat = Zero | Suc Nat

We should like to synthesize some statement corresponding (in a suitable logic) to

∀P ∈ Nat→ Prop. P Zero → (∀k ∈ Nat. P k→ P (Suc k)) → ∀n ∈ Nat. P n

In a theoretical presentation, we need not concern ourselves too much about where
these names come from, and we can always choose them so that the sense is clear. In
a practical implementation, we have to be more cautious—the user (unscrupulous,
shameless or entirely innocent) may decide to declare

data Nat = Zero | P Nat

or even

data P = Zero | Suc P

We shall have to be careful not to end up with such nonsense as

∀P ∈ Nat→ Prop. P Zero → (∀k ∈ Nat. P k→ P (P k)) → ∀n ∈ Nat. P n

or

∀P ∈ P→ Prop. P Zero → (∀k ∈ P. P k→ P (Suc k)) → ∀n ∈ P. P n

This may seem like scaremongering, but it is not a joke—there are plenty of systems
out there which do not handle this issue safely, although we shall not be so cruel as
to name names. Is yours one?

Possible alternative strategies include the adoption of one of de Bruijn’s systems of
nameless dummies [dB72] for the local quantifiers, either counting binders (including
→, which we take to abbreviate ∀ where the bound variable is not used) from the
reference outward—de Bruijn indices,

∀− ∈ Nat→ Prop. 0 Zero → (∀− ∈ Nat. 2 0→ 3 (Suc 1)) → ∀− ∈ Nat. 3 0

or from the outside inward—de Bruijn levels.

∀0 ∈ Nat→ Prop. 0 Zero → (∀2 ∈ Nat. 0 2→ 0 (Suc 2)) → ∀3 ∈ Nat. 0 3

It is unfair to object that terms in de Bruijn syntax are unfit for human consumption—
they are not intended to be. Their main benefits lie in their uniform delivery of
capture-avoiding substitution and their systematic resolution of α-equivalence. Our

2

foes cannot choose wicked names in order to make mischief.

However, we do recommend that anyone seriously contemplating the use of de Bruijn
syntax for systematic constructions like the above should think again. Performing
constructions in either of these systems requires a lot of arithmetic, which occludes
the idea being implemented, results in unreadable, unreliable, unmaintainable code,
and is besides hard work. We, or rather our programs, cannot choose good names
in order to make sense.

A mixed representation of names provides a remedy. In this paper, we name free
variables (ie, variables bound in the context) so that we can refer to them and
rearrange them without the need to count; we give bound variables de Bruijn indices
to ensure a canonical means of reference where the is no ‘social agreement’ on a
name.

The distinction between established linguistic signs, connecting a signal with its
signification, and local signs, where the particular choice of signal is arbitrary was
observed in the context of natural language by Saussure [dS83]. In formal languages,
the idea of distinguishing free and bound variables syntactically is also far from
new. Gentzen [Gen69], Kleene [Kle52] and Prawitz [Pra65] certainly exploit it. The
second author learned it from Randy Pollack who learned it in turn from Thierry
Coquand [Coq91]; the first author learned it from the second.

The idea of using free names and bound indices is not new either—it is a common
representation in interactive proof systems. Here ‘free’ means ‘bound globally in
the context’ and ‘bound’ means ‘bound locally in the goal’. The distinction is keyed
to the human user’s perspective—the user proves an implication by introducing the
hypothesis to the context, naming it H for easy reference, although other names are,
we hear, permitted. By doing so, the user shifts perspective to one which is locally
more convenient, even though the resulting proof is intended to apply regardless of
naming.

What is new in this paper is the use of similar perspective shifts to support the use of
convenient naming in constructions where the ‘user’ is itself a program. These shifts
are similar in character to those used by the second author (with Randy Pollack)
when formalizing Pure Type Systems [MP93, MP99], although in that work, bound
variables are distinguished from free variables but nonetheless named. We draw on
the ‘zipper’ technique, brought to us by Huet [Hue97], to help us write programs
which navigate and modify the structure of terms. Huet equips syntax with an
auxiliary datatype representing a structural context. In our variation on his theme,
we require naming as we navigate under binders to ensure that a structural context
is also a linguistic context. In effect, whoever ‘I’ may be, if I am involved in the
discourse, then I am not a number : I am a free variable.

We further choose a representation of names which readily supports the separation
of namespaces between mechanical constructions which call each other and indeed
themselves. The choice we make is unremarkable, in the light of how humans
address similar issues in the design of large computer systems. Both the ends and
the means of exploiting names in human discourse become no less pertinent when
the discourse is mechanical.

As the above example may suggest, we develop our techniques in this paper for a
fragment of a relational logic, featuring variables, application, and universal quan-
tification. It can also be seen as a non-computational fragment of a dependent type
theory. We’ve deliberately avoided a computational language in order to keep the
focus on construction, but you can—and every day we do—certainly apply the same

3

ideas to λ-calculi.

Acknowledgements

We should like to thank all of our friends and colleagues who have encouraged us
and fed us ideas through the years. The earliest version of the programs we present
here dates back to 1995—our Edinburgh days—and can still be found in the source
code for Lego version 1.3, in a file named inscrutably conor-voodoo.sml.

The first author would also like to thank the Foundations of Programming group
at the University of Nottingham who provided the opportunity and the highly
interactive audience for the informal ‘Life Under Binders’ course in which this work
acquired its present tutorial form.

Special thanks must go to Randy Pollack, from whose conversation and implemen-
tation we have both learned a great deal.

2 La syntaxe du jour

Today, let us have variables, application, and universal quantification. We choose
an entirely first-order presentation:

infixl 9 :$

infixr 6 :→
data Expr = F Name — free variables

| B Int — bound variables
| Expr :$ Expr — application
| Expr :→ Scope — universal quantification

deriving (Show, Eq)

newtype Scope = Scope Expr deriving (Show, Eq)

We shall define Name later—for now, let us at least presume that it supports the
(==) test. Observe that expressions over a common context of free Names can
meaningfully be compared with the ordinary (==) test—α-conversion is not an
issue. Urban sophisticates will doubtless be aware of the tricks you can play with
polymorphic recursion if you parametrize expressions by names [BP99, AR99], but
they would serve here only to distract from the central ideas of the paper. We shall
tend to maintain a rustic monomorphism.

Nonetheless, we do introduce a cosmetic type distinction to help us remember that
the scope of a binder must be interpreted differently. The Scope type stands in lieu
of the precise ‘term over one more variable’ construction. For the most part, we shall
pretend that Expr is the type of closed expressions—those with no ‘dangling’ bound
variables pointing out of scope, and that Scope has one dangling bound variable,
called B0 at the top level. In order to support this pretence, however, we must first
develop the key utilities which trade between free and bound variables, providing a
high level interface to Scope. We shall have

abstract :: Name → Expr → Scope

instantiate :: Expr → Scope → Expr

The operation abstract me turns a closed expression into a scope by turning me
into B 0.

4

abstract :: Name → Expr → Scope

abstract me expr = Scope (letmeB 0 expr) where
letmeB this (F you) | you==me = B this

| otherwise = F you
letmeB this (B that) = B that
letmeB this (fun :$ arg) = letmeB this fun :$ letmeB this arg
letmeB this (domain :→ Scope body) =

letmeB this domain :→ Scope (letmeB (this + 1) body)

Observe that the existing bound variables within expr ’s Scopes remain untouched.
Meanwhile, instantiate image turns a scope into an expression by turning B 0 (or
its successors under successive Scopes) into image, which we presume is closed. Of
course, F me is closed, so we can use instantiate (F me) to invert abstract me.

instantiate :: Expr → Scope → Expr

instantiate what (Scope body) = what’sB 0 body where
what’sB this (B that) | this==that = what

| otherwise = B that
what’sB this (F you) = F you
what’sB this (fun :$ arg) = what’sB this fun :$ what’sB this arg
what’sB this (domain :→ Scope body) =

what’sB this domain :→ Scope (what’sB (this + 1) body)

Note that the choice of an unsophisticated de Bruijn indexed representation allows
us to re-use the closed expression what, however many bound variables have become
available when it is being referenced.

Those with an eye for abstraction will have spotted that both of these operations
can be expressed as instances of a single general-purpose and rather dangerous
higher-order substitution operation, parametrized by arbitrary operations on free
and bound variables which in turn take a count of the Scopes we have entered—
perhaps

varsplatter :: (Int→ Name → Expr) → (Int→ Int → Expr) → Expr → Expr

We might well do this in practice, to reduce the ‘boilerplate’ code required by the
separate first-order definitions. Here again, we choose the direct presentation for
pedagogical purposes.

Another potential optimization, given that we often iterate these operations, is to
generalize abstract, so that it turns a sequence of names into dangling indices, and
correspondingly instantiate, replacing dangling indices with a sequence of closed
expressions. We leave this as an exercise for the reader.

From now on, let’s pretend that Expr is the type of closed expressions and that
Scopes have just one dangling index. The data constructors B and Scope have
served their purpose—we prefer to speak of them no longer.

It’s trivial to define substitution for closed expressions using abstract and instantiate
(naturally, this also admits a less succinct, more efficient implementation):

substitute :: Expr → Name → Expr → Expr

substitute image me = instantiate image · abstract me

Next, let us see how instantiate and abstract enable us to navigate under binders
and back out again, without ever directly encountering a de Bruijn index.

5

3 One-Step Navigation

We may readily define operations which attempt to decompose expressions, safely
combining selection (testing which constructor is at the head) with projection (ex-
tracting subexpressions). Haskell’s support for monads gives us a convenient means
to handle failure when the ‘wrong’ constructor is present. Inverting (:$) is straight-
forward:

unapply :: MonadPlus m ⇒ Expr → m (Expr, Expr)
unapply (fun :$ arg) = return (fun, arg)
unapply = mzero

For our quantifier, however, we combine structural decomposition with the naming
of the bound variable. Rather than splitting a quantified expression into a domain
and a Scope, we shall extract a binding and the closed Expr representing the range.
We introduce a special type of pairs which happen to be bindings, rather than using
ordinary tuples, just to make the appearance of programs suitably suggestive. We
equip Binding with some useful coercions.

infix 5 :∈
data Binding = Name :∈ Expr

name :: Binding → Name

name (me :∈) = me
var :: Binding → Expr

var = F · name

Now we can develop a ‘smart constructor’ which introduces a universal quantifier
by discharging a binding, and its monadically lifted inverter:

infixr 6 −→
(−→) :: Binding → Expr → Expr
(me :∈ domain) −→ range = domain :→ abstract me range

infix ←−
(←−) :: MonadPlus m ⇒ Name → Expr → m (Binding, Expr)
me←− (domain :→ scope) = return (me :∈ domain, instantiate (F me) scope)
me←− = mzero

3.1 Inspiration—the ‘zipper’

We can give an account of one-hole contexts in the style of Huet’s ‘zippers’ [Hue97].
A Zipper is a stack, storing the information required to reconstruct an expression
tree from a particular subexpression at each step on the path back to the root. The
operations defined above allow us to develop the corresponding one-step manoeuvres
uniformly over the type (Zipper, Expr).

infixl 4 :<
data Stack x = Empty | Empty x :< x deriving (Show, Eq)

6

type Zipper = Stack Step

data Step = Fun () Expr

| Arg Expr ()
| Domain () Scope
| Range Binding ()

This zipper structure combines the notions of structural and linguistic context—a
Zipper contains the bindings for the names which may appear in any Expr which
sits in the ‘hole’. Note that we do not bind the variable when we edit a domain,
because it is not in scope. We can easily edit these zippers, inserting new bindings
(e.g., for inductive hypotheses) or permuting bindings where dependency permits,
without needing to renumber de Bruijn variables.

By contrast, editing with the basic zipper, constructed with respect to the raw def-
inition of Expr, moving into scopes without binding variables, requires a nightmare
of arithmetic. The first author did most of the implementation for his Master’s
project[McB98] this way, before the second author caught him at it and set him on
a wiser path.

The zipper construction provides a general-purpose presentation of navigation within
expressions—that’s a strength when we need to cope with navigation choices made
by an external agency, such as the user of a structure editor. However, it’s a weak-
ness when we wish to support more focused editing strategies. In what follows,
we’ll be working not with the zipper itself, but with specific subtypes of it, repre-
senting particular kinds of one-hole context, such as ‘quantifier prefix’ or ‘argument
sequence’. Correspondingly, the operations we develop should be seen as special-
izations of Huet’s.

But hold on a moment! Before we can develop more systematic editing tools, we
must address the fact that navigating under a binder requires the supply of a Name.
Where is this name to come from? How is it to be represented? What has the former
to do with the latter? Let’s now consider naming.

4 On Naming

It’s not unusual to find names represented as elements of String. However, for our
purposes, that won’t do. String does not have enough structure to reflect the way
names get chosen. Choosing distinct names is easy if you’re the only person doing it,
because you can do it deliberately. However, if there is more than one agent choosing
names, we encounter the possibility that their choices will overlap by accident. How
do we make sure this cannot happen? One way is to introduce a global symbol
generator, mangling names to ensure they are globally unique; another approach
requires a global counter, incremented each time a name is chosen—variables do
not have names so much as birthdays.

Our approach is familiar from the context of module systems, or object-oriented
programming. We control the anarchy of naming by introducing a power structure—
we have hierarchical names.

type Name = Stack (String, Int)

Names get longer as you move down the hierarchy: power is thus characterized by
the partial order dual to the obvious ‘prefix’ ordering, induced by concatenation:

7

you < (you +< yourstaff)

infixl 4 +<

(+<) :: Stack x → Stack x → Stack x
xs +< Empty = xs
xs +< (ys :< y) = xs +< ys :< y

Why a Stack? The idea is to give names to the agents which perform constructions,
as well as to the variables which appear in constructions. We say that agents are
independent if their names are mutually incomparable with respect to <. In our
operations, we shall ensure that agents only choose names over which they have
power—longer names than their own. It is not hard to see that independent names
independently extended are still independent. This scheme of naming thus localizes
choice of fresh names, making it easy to manage, even in recursive constructions.
We only need a global name generator when printing de Bruijn syntax in user-legible
form, and even then only to provide names which correspond closely to those for
which the user has indicated a preference.

Why (String, Int)? The Strings give us legibility; the Ints an easy way to express
uniform sequences of names x0, . . . xn. Two little helpers will make simple names
easier to construct:

infixl 6 //
(//) :: Name → String → Name

me // s = me :< (s, 0)

nm :: String → Name

nm s = Empty // s

We shall develop our operations in the form of agencies.

type Agency agent = Name → agent

We think of an Agency t which takes a name to an agent with that name. We’ll
be careful to maintain the power relationship between an agent’s name and the
names it chooses for variables and for its sub-agents. You have already seen an
agency—the under-binding navigator, which may be retyped

infix ←−
(←−) :: MonadPlus m ⇒ Agency (Expr → m (Binding, Expr))

That is, (me ←−) is the agent which binds me by decomposing a quantifier. Note
that here the agent which creates the binding shares its name—that’s a common
idiom in our work.

5 A Construction Kit

Let’s now build higher-level tools for composing and decomposing expressions.
Firstly, we’ll have equipment for working with a quantifier prefix, rather than indi-
vidual bindings—here is the operator which discharges a prefix over an expression,
iterating −→.

8

type Prefix = Stack Binding

infixr 6 →→
(→→) :: Prefix → Expr → Expr

Empty →→ expr = expr
(bindings :< binding)→→ range = bindings →→ binding −→ range

The corresponding destructor is an agency. Given a name me and a string x, it
delivers a quantifier prefix with names of the form me :< (x, i) where the ‘subscript’
i is numbered from 1:

unprefix :: Agency (String → Expr → (Prefix, Expr))
unprefix me x thing = introduce 1 (Empty, thing) where

introduce :: Int → (Prefix, Expr) → (Prefix, Expr)
introduce i (bindings, thing) =

case (me :< (x, i))←− thing of
Just (binding, range)→ introduce (i + 1) (bindings :< binding, range)
Nothing → (bindings, thing)

Note that introduce specifically exploits the Maybe instance of the monadically
lifted binding agency (←−).

If me is suitably independent, and unprefix me x expr = (bindings, range), then
range is unquantified and expr = bindings →→ range.

A little example will show how these tools are used. Suppose we wish to implement
the weakening agency, which inserts a new hypothesis y with a given domain into a
quantified expression after all the old ones (x1, . . . , xn). Here’s how we do it safely
and with names, not arithmetic.

weaken :: Agency (Expr → Expr → Expr)
weaken me dom expr = doms →→ (me // “y” :∈ dom) −→ range where

(doms, range) = unprefix me “x” expr

The independence of the name supplied to the agency is enough to ensure the
freshness of the names chosen locally by the agent.

We shall also need to build and decompose applications in terms of argument se-
quences, represented via [Expr]. First, we iterate :$, yielding $$.

infixl 9 $$
($$) :: Expr → [Expr] → Expr

expr $$ [] = expr
fun $$ (arg : args) = fun :$ arg $$ args

Next, we build the destructor—this does not need to be an agency, as it binds no
names:

unapplies :: Expr → (Expr, [Expr])
unapplies expr = peel (expr, []) where

peel (fun :$ arg, args) = peel (fun, arg : args)
peel funargs = funargs

Meaningful formulae in this particular language of expressions all fit the pattern
∀ x1 : X1. . . . ∀ xm : Xm. R e1 . . . en, where R is a variable. Of course, either the
quantifier prefix or the argument sequence or both may be empty—this pattern
excludes only meaningless applications of quantified formulae. Note that the same is
not true of languages with λ-abstraction and β-redices, but here we may reasonably

9

presume that the meaningless case never happens, and develop a one-stop analysis
agency:

data Analysis = ForAll Prefix Name [Expr]

analysis :: Agency (String → Expr → Analysis)
analysis me x expr = ForAll prefix f args where

(prefix, range) = unprefix me x expr
(F f, args) = unapplies range

Again, the datatype Analysis is introduced only to make the appearance of the result
suitably suggestive of its meaning, especially in patterns.

The final piece of kit we shall define in this section delivers the application of a
variable to a quantifier prefix—in practice, usually the very quantifier prefix over
which it is abstracted, yielding a typical application of a functional object:

infixl 9 −$$
(−$$) :: Name → Prefix → Expr

f −$$ parameters = apply (F f) parameters where
apply expr Empty = expr
apply fun (bindings :< a :∈) = apply fun bindings :$ F a

An example of this in action is the generalization functional. This takes a prefix
and a binding, returning a transformed binding, abstracted over the prefix, together
with the function which updates expressions accordingly.

generalize :: Prefix → Binding → (Binding, Expr→ Expr)
generalize bindings (me :∈ expr) =

(me :∈ bindings →→ expr, substitute (me −$$ bindings) me)

Indeed, working in a λ-calculus, these tools make it easy to implement λ-lifting [Joh85],
and also the ‘raising’ step in Miller’s unification algorithm, working under a mixed
prefix of existential and universal quantifiers [Mil92].

6 Example—inductive elimination operators for

datatype families

We shall now use our tools to develop our example—constructing induction princi-
ples. To make things a little more challenging, and a little closer to home, let us
consider the more general problem of constructing the inductive elimination oper-
ator for a datatype family [Dyb91].

Datatype families are collections of sets defined not parametrically as in Hindley-
Milner languages, but by mutual induction, indexed over other data. They are the
cornerstone of our dependently typed programming language, Epigram [MM04].
We present them by first declaring the type constructor, explaining the indexing
structure, and then the data constructors, explaining how larger elements of
types in the family are built from smaller ones. A common example is the family
of vectors—lists indexed by element type and length. In Epigram, we would write:

data

(

X : ? ; n : Nat
Vec X n : ?

)

where

(

Vnil : Vec X Zero

)

;

(

x : X ; xs : Vec X n
Vcons x xs : Vec X (Suc n)

)

10

That is, the Vnil constructor only makes empty vectors, whilst Vcons extends length
by exactly one. This definition would elaborate (by a process rather like Hindley-
Milner type inference) to a series of more explicit declarations in a language rather
like that which we study in this paper:

Vec : ∀X ∈ Set. ∀n ∈ Nat. Set

Vnil : ∀X ∈ Set. Vec X Zero

Vcons : ∀X ∈ Set. ∀n ∈ Nat. ∀x ∈ X. ∀xs ∈ Vec X n. Vec X (Suc n)

The elimination operator for vectors takes three kinds of arguments: first, the
targets—the vector to be eliminated, preceded by the indices of its type; second,
the motive,1 explaining what is to be achieved by the elimination; and third, the
methods, explaining how the motive is to be pursued for each constructor in turn.
Here it is, made fully explicit:

Vec-Ind ∈
∀X ∈ Set.

∀n ∈ Nat.
∀xs ∈ Vec X n.







targets

∀P ∈ ∀X ∈ Set. ∀n ∈ Nat. ∀xs ∈ Vec X n. Set. motive
∀mn ∈ ∀X ∈ Set. P X Zero (Vnil X).
∀mc ∈ ∀X ∈ Set. ∀n ∈ Nat. ∀x ∈ X. ∀xs ∈ Vec X n.

∀h ∈ P X n xs. P X (Suc X) (Vcons X n x xs).







methods

P X n xs

It is not hard to appreciate that constructing such expressions using only strings for
variables provides a legion of opportunities for accidental capture and abuse. On
the other hand, the arithmetic involved in a purely de Bruijn indexed construction
is truly terrifying. But with our tools, the construction is safe and sweatless.

To simplify the exposition, we shall presume that the declaration of the family takes
the form of a binding for the type constructor and a context of data constructors
which have already been checked for validity, say, according to the schema given
by Luo [Luo94]—checking as we go just requires a little extra work and a shift
to an appropriate monad. Luo’s schema is a sound (but by no means complete)
set of syntactic conditions on family declarations which guarantee the existence
of a semantically meaningful induction principle. The relevant conditions and the
corresponding constructions are

1. The type constructor is typed as follows

F : ∀i1 : I1. . . . ∀in : In. Set

Correspondingly, the target prefix is ∀~i : ~I. ∀x : F~i, and the motive has type
P : ∀~i :~I. ∀x : F~i. Set.

2. Each constructor has type

c : ∀a1 : A1. . . .∀am. : Am. F s1 . . . sn

where the ~s do not mention F. The corresponding method has type

∀~a : ~A. ∀~h : ~H. P~s (c~a)

where the ~H are the inductive hypotheses, specified as follows.

3. Non-recursive constructor arguments a : A do not mention F in A and con-
tribute no inductive hypothesis.

1We prefer ‘motive’ [McB02] to ‘induction predicate’, because a motive need not be a predicate
(i.e., a constructor of propositions) nor need an elimination operator be inductive.

11

4. Recursive constructor arguments have form

a : ∀y
1

: Y1. . . . ∀yk : Yk. F~r

where F is not mentioned2 in the ~Y or the ~r. The corresponding inductive
hypothesis is

h : ∀~y : ~Y. P~r (a~y)

Observe that condition 4 allows for the inclusion of higher-order recursive argu-
ments, parametrized by some ~y : ~Y. These support structures containing infinitary
data, such as

data InfTree : ? where Leaf : InfTree ; Node : (Nat→ InfTree) → InfTree

We neglected to include these structures in our paper presentation of Epigram [MM04]
because they would have reduced our light-to-heat ratio for no profit—we gave no
examples which involved them. However, as you shall shortly see, they do not com-
plicate the implementation in the slightest—the corresponding inductive hypothesis
is parametrized by the same prefix.

Our agency for inductive elimination operators follows Luo’s recipe directly. The
basic outline is as follows:

makeInductiveElim :: Agency (Binding → Prefix → Binding)
makeInductiveElim me (family :∈ famtype) constructors =

me :∈ targets →→
motive −→
fmap method constructors →→
name motive −$$ targets

where — constructions from condition 1
ForAll indices set [] = analysis me “i” famtype
targets = indices :< me // “x” :∈ family −$$indices
motive = me // “P” :∈ targets →→ F (nm “Set”)
method :: Binding → Binding

. . .

As we have seen before, makeInductiveElim is an agency which constructs a
binding—the intended name of the elimination operator is used as the name of
the agent. The analysis function readily extracts the indices from the type of the
family (we presume that this ranges over Set). From here, we can construct the
type of an element with those indices to compute the prefix of targets over which
the motive is abstracted. Presuming we can construct an appropriate method for
each constructor, we can now assemble our induction principle.

But how do we construct a method for a constructor? Let us implement the con-
structions corresponding to condition 2.

2This condition is known as strict positivity.

12

method :: Binding → Binding

method (con :∈ contype) =
meth :∈ conargs →→

(conargs >>= indhyp) →→
var motive $$ conindices :$ (con −$$ conargs)

where
meth = me // “m” +< con
ForAll conargs fam conindices = analysis meth “a” contype
indhyp :: Binding → Prefix

. . .

The method’s type says that the motive should hold for those targets which can
possibly be built by the constructor, given the constructor’s arguments, together
with inductive hypotheses for those of its arguments which happen to be recursive.
We can easily combine the hypothesis constructions for non-recursive and recursive
arguments (3 and 4, above) by making Stack an instance of the MonadPlus class in
exactly the same ‘list of successes’ style as we have for ordinary lists [Wad85]. The
non-recursive constructor arguments give rise to an empty Prefix (= Stack Binding)
of inductive hypothesis bindings.

indhyp :: Binding → Prefix
indhyp (arg :∈ argtype) = do

guard (argfam==family) — yield Empty if arg is non-recursive
return (arg // “h” :∈ argargs →→

var motive $$ argindices :$ (arg $$argargs))
where ForAll argargs argfam argindices = analysis meth “y” argtype

With this, our construction is complete.

Epilogue

In this paper, we have shown how to manipulate syntax with binding using a mixed
representation of names for free variables (with respect to the task in hand) and de
Bruijn indices [dB72] for bound variables. By doing so, we retain the advantages of
both representations: naming supports easy, arithmetic-free manipulation of terms;
de Bruijn indices eliminate the need for α-conversion. Further, we have ensured
that not only the user but also the implementation need never deal with de Bruijn
indices, except within key basic operations such as abstract and instantiate.

Moreover, we have chosen a representation for names which readily supports a power
structure naturally reflecting the structure of agents within the implementation.
Name choice is safe and straightforward. Our technology combines easily with an
approach to syntax manipulation inspired by Huet’s ‘zippers’[Hue97].

Without the technology in this paper, we could not have implemented Epigram [McB04].
Our example—constructing inductive elimination operators for datatype families—
is but one of many where it proves invaluable. Others indeed include λ-lifting [Joh85]
and Miller-style unification [Mil92]. More particularly, this technology evolved from
our struggle to implement the ‘elimination with a motive’ approach [McB02], cen-
tral to the elaboration of Epigram programs into Type Theory. This transforms a
problem containing a specific instance of a datatype family

∀~s : ~S. ∀x : F~t. T

into an equivalent problem which is immediately susceptible to elimination with

13

operators like those constructed in our example.

∀~i :~I. ∀x′ : F~i.

∀~s : ~S. ∀x : F~t. T.
~i =~t → x′ = x →
T

Whatever the syntax you may find yourself manipulating, and whether or not it
involves dependent types, the techniques we have illustrated provide one way to
make the job easier. By making computers using names the way people do, we hope
you can accomplish such tasks straightforwardly, without becoming a prisoner of
numbers.

References

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda-
terms using generalized inductive types. In Computer Science Logic 1999,
1999.

[BP99] Richard Bird and Ross Paterson. de Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–92, 1999.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In
Huet and Plotkin [HP91].

[dB72] Nicolas G. de Bruijn. Lambda Calculus notation with nameless dummies:
a tool for automatic formula manipulation. Indagationes Mathematicæ,
34:381–392, 1972.

[dS83] Ferdinand de Saussure. Course in General Linguistics. Duckworth, 1983.
English translation by Roy Harris.

[Dyb91] Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory.
In Huet and Plotkin [HP91].

[Gen69] Gerhard Gentzen. The collected papers of Gerhard Gentzen. North-
Holland, 1969. Edited by Manfred Szabo.

[HP91] Gérard Huet and Gordon Plotkin, editors. Logical Frameworks. CUP, 1991.

[Hue97] Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–
554, 1997.

[Joh85] Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In Jouannaud [Jou85], pages 190–203.

[Jou85] Jean-Pierre Jouannaud, editor. Functional Programming Languages and
Computer Architecture, volume 201 of LNCS. Springer-Verlag, 1985.

[Kle52] S.C. Kleene. Introduction to Metamathematics. van Nostrand Rheinhold,
Princeton, 1952.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, 1994.

[McB98] Conor McBride. Inverting inductively defined relations in LEGO. In
E. Giménez and C. Paulin-Mohring, editors, Types for Proofs and Programs,
’96, volume 1512 of LNCS, pages 236–253. Springer-Verlag, 1998.

14

[McB02] Conor McBride. Elimination with a Motive. In Paul Callaghan, Zhaohui
Luo, James McKinna, and Robert Pollack, editors, Types for Proofs and
Programs (Proceedings of the International Workshop, TYPES’00), volume
2277 of LNCS. Springer-Verlag, 2002.

[McB04] Conor McBride. Epigram, 2004. http://www.dur.ac.uk/CARG/epigram.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Com-
putation, 14(4):321–358, 1992.

[MM04] C. McBride and J. McKinna. The view from the left. J. of Functional
Programming, 14(1), 2004.

[MP93] James McKinna and Robert Pollack. Pure type systems formalized. In Marc
Bezem and Jan-Friso Groote, editors, Int. Conf. Typed Lambda Calculi and
Applications TLCA’93, volume 664 of LNCS. Springer-Verlag, 1993.

[MP99] James McKinna and Robert Pollack. Some lambda calculus and type theory
formalized. Journal of Automated Reasoning, 23:373–409, 1999. (Special
Issue on Formal Proof, editors Gail Pieper and Frank Pfenning).

[Pra65] Dag Prawitz. Natural Deduction—A proof theoretical study. Almquist and
Wiksell, Stockholm, 1965.

[Wad85] Philip Wadler. How to Replace Failure by a list of Successes. In Jouannaud
[Jou85], pages 113–128.

15

